New techniques for trail bounds and application to differential trails in Keccak

نویسندگان

  • Silvia Mella
  • Joan Daemen
  • Gilles Van Assche
چکیده

We present new techniques to efficiently scan the space of high-probability differential trails in bit-oriented ciphers. Differential trails consist in sequences of state patterns that we represent as ordered lists of basic components in order to arrange them in a tree. The task of generating trails with probability above some threshold starts with the traversal of the tree. Our choice of basic components allows us to efficiently prune the tree based on the fact that we can tightly bound the probability of all descendants for any node. Then we extend the state patterns resulting from the tree traversal into longer trails using similar bounding techniques. We apply these techniques to the 4 largest Keccak-f permutations, for which we are able to scan the space of trails with weight per round of 15. This space is orders of magnitude larger than previously best result published on Keccak-f [1600] that reached 12, which in turn is orders of magnitude larger than any published results achieved with standard tools, that reached at most 9. As a result we provide new and improved bounds for the minimum weight of differential trails on 3, 4, 5 and 6 rounds. We also report on new trails that are, to the best of our knowledge, the ones with the highest known probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Propagation Analysis of Keccak

In this paper we introduce new concepts that help read and understand low-weight differential trails in Keccak. We then propose efficient techniques to exhaustively generate all 3-round trails in its largest permutation below a given weight. This allows us to prove that any 6round differential trail in Keccak-f [1600] has weight at least 74. In the worst-case diffusion scenario where the mixing...

متن کامل

Automatic Search for the Best Trails in ARX: Application to Block Cipher Speck

We propose the first adaptation of Matsui’s algorithm for finding the best differential and linear trails to the class of ARX ciphers. It is based on a branch-and-bound search strategy, does not use any heuristics and returns optimal results. The practical application of the new algorithm is demonstrated on reduced round variants of block ciphers from the Speck family. More specifically, we rep...

متن کامل

New Collision Attacks on Round-Reduced Keccak

In this paper, we focus on collision attacks against Keccak hash function family and some of its variants. Following the framework developed by Dinur et al. at FSE 2012 where 4-round collisions were found by combining 3-round differential trails and 1-round connectors, we extend the connectors one round further hence achieve collision attacks for up to 5 rounds. The extension is possible thanks...

متن کامل

The Road from Panama to Keccak via RadioGatún

In this paper, we explain the design choices of Panama [8] and RadioGatún [1], which lead to Keccak [3]. After a brief recall of Panama, RadioGatún and the trail backtracking cost, we focus on three important aspects. First, we explain the role of the belt in the light of differential trails. Second, we discuss the relative advantages of a block mode hash function compared to a stream mode one....

متن کامل

Coefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function

We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Trans. Symmetric Cryptol.

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017